Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please check the capturing of keywords from the manuscript draft and correct if necessary.</td>
</tr>
<tr>
<td>Q2</td>
<td>As per style sheet instruction, Highlights is required for all submissions. Kindly provide Highlights that conform to the requirement for us to proceed. For more information, please see the Guide for Authors.</td>
</tr>
<tr>
<td>Q3</td>
<td>Please provide the volume number and page range for the bibliography in Ref. [2].</td>
</tr>
<tr>
<td>Q4</td>
<td>Please provide an update for Reference [4], in press.</td>
</tr>
</tbody>
</table>

Please check this box if you have no corrections to make to the PDF file.

Thank you for your assistance.
Letter to the Editor

Off-pump versus on-pump coronary artery bypass grafting: Quantifying information size by trial sequential analysis

Coronary artery bypass surgery (CABG) has traditionally been performed with cardio-pulmonary bypass and an arrested heart (on-pump CABG). Conducting the operation on the beating heart (off-pump CABG) has been made possible by cardiac stabilisers, thereby avoiding cardiac arrest and cardiopulmonary bypass.

Several studies have been done to evaluate off-pump versus on-pump CABG, but results are quite conflicting. In 2012, the meta-analysis by Möller and co-workers [1] reported that off-pump increased all-cause mortality compared with on-pump CABG; in particular, trial sequential analysis (TSA) of the 10 trials with low risk of bias showed a significantly increased risk of all-cause mortality with off-pump compared with on-pump CABG [1]. More recently, the large randomised-controlled trial by Lamy et al. 2013 [2] has found no difference between off-pump and on-pump in death rates at 1 year (122/2375 versus 119/2377, respectively; RR, 1.03; 95%CI, 0.80 to 1.32; p > 0.05).

We applied TSA to re-examine, on the basis of all-cause mortality, the 10 trials included by Möller et al. in the above-mentioned analysis plus the trial by Lamy et al. (i.e. a total of 11 trials for 9702 patients).

Our TSA (random-effect model) employed the following assumptions: type 1 error = 5% (two-sided); power = 80%; event frequency for controls = 5.1%; expected relative difference = 18% (in favour of on-pump technique). The boundaries for concluding superiority or inferiority or futility were calculated according to the O’Brien-Fleming alpha-spending function. A specific statistical software was used [User Manual for TSA, Copenhagen Trial Unit 2011, see www.ctu.dk/tsa].

Fig. 1 shows the results of our TSA. In examining the 11 trials (including the one by Lamy et al.), the cumulative z-curve did not cross the superiority boundary and remained quite far from it, in contrast to the finding reported by Möller et al. [1]. More importantly,
the optimal information size, determined by our TSA on the basis of these trials, was estimated at $N = 18,689$, which is much more than the total number of 9702 patients included so far in the 11 trials.

In conclusion, although a quite large number of clinical studies have been completed and despite the availability of a recent large-scale randomised trial, the question of whether off-pump and on-pump approaches imply different mortality rates remains open, and further research in this area is still needed. As this example of application confirms, the main advantage of TSA [3,4] is that this statistical technique contributes to determine whether the available evidence on a given therapeutic problem is conclusive (with demonstration of superiority or inferiority or futility) or inconclusive and, in inconclusive cases, indicates which information size would be needed to draw a statistically sound conclusion.

Conflict of interests

The authors state that they have no conflicts of interest.

References

Dario Maratea 71
Valeria Fadda 72
Sabrina Trippoli 73
Andrea Messori * 74

HTA Unit, ESTAV Toscana Centro
Regional Health Service, 50100 Firenze, Italy

* Corresponding author at: HTA Unit, Area Vasta Centro Toscana, Regional Health System, Via Guimaraes 9-11, 59100 Prato, Italy.

Tel.: +39 3389513583; fax: +39 0574 701319.

E-mail addresses: andrea.messori@gmail.com,
andrea.messori@estav-centro.toscana.it (A. Messori).

2 April 2013
Available online xxxx